

State of Utah

SPENCER J. COX Governor

DEIDRE HENDERSON Lieutenant Governor

December 1, 2022

David Robinson Sawtooth Caverns, LLC 6965 South Union Park Center #270 Midvale, UT 84047 david.robinson@sawtoothcaverns.com

Dear David Robinson,

Re: Engineer Review: Modification to Approval Order to DAQE-AN143260008-22, to Update Equipment and Emissions Project Number: N143260009

The DAQ requests a company representative review and sign the attached Engineer Review (ER). This ER identifies all applicable elements of the New Source Review permitting program. Sawtooth Caverns, LLC should complete this review within **10 business days** of receipt.

Sawtooth Caverns, LLC should contact **Tad Anderson** at (385) 306-6515 if there are questions or concerns with the review of the draft permit conditions. Upon resolution of your concerns, please email tdanderson@utah.gov the signed cover letter to Tad Anderson. Upon receipt of the signed cover letter, the DAQ will prepare an ITA for a 30-day public comment period. At the completion of the comment period, the DAQ will address any comments and will prepare an AO for signature by the DAQ Director.

If Sawtooth Caverns, LLC does not respond to this letter within **10 business days**, the project will move forward without source concurrence. If Sawtooth Caverns, LLC has concerns that cannot be resolved and the project becomes stagnant, the DAQ Director may issue an Order prohibiting construction.

Approval Signature

(Signature & Date)

Environmental Quality Kimberly D. Shelley

Executive Director DIVISION OF AIR QUALITY Bryce C. Bird Director

Department of

RN143260009

UTAH DIVISION OF AIR QUALITY ENGINEER REVIEW

SOURCE INFORMATION

Project Number Owner Name Mailing Address

Source Name Source Location

UTM Projection UTM Datum UTM Zone SIC Code

Source Contact Phone Number Email

Project Engineer Phone Number Email

Notice of Intent (NOI) Submitted Date of Accepted Application N143260009 Sawtooth Caverns, LLC 6965 South Union Park Center #270 Midvale, UT, 84047

Sawtooth Caverns, LLC - Sawtooth NGL Storage Facility 9650 North 540 East Delta, UT 84624

365,044 m Easting, 4,372,053 m Northing NAD83 UTM Zone 12 4226 (Special Warehousing & Storage, NEC)

David Robinson (832) 489-8837 david.robinson@sawtoothcaverns.com

Tad Anderson, Engineer (385) 306-6515 tdanderson@utah.gov

June 16, 2022 November 9, 2022

SOURCE DESCRIPTION

General Description

Sawtooth Caverns, LLC (Sawtooth) operates the Sawtooth Natural Gas Liquids (NGL) Storage Facility near Delta, Utah. The Sawtooth NGL Storage Facility receives NGLs and refined products from trucks and railcars and stores NGLs and refined products in multiple underground salt caverns. Equipment includes pipelines, four refined products storage vessels (tanks), four small additive and waste tanks, and allows refined products to be stored in the salt caverns in addition to NGL. The products will be moved only by pipeline, truck, and railcar.

<u>NSR Classification:</u> Minor Modification at Minor Source

Source Classification Located in Attainment Area, Millard County Airs Source Size: B

Applicable Federal Standards

NSPS (Part 60), A: General Provisions

NSPS (Part 60), Kb: Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984

NSPS (Part 60), XX: Standards of Performance for Bulk Gasoline Terminals

NSPS (Part 60), IIII: Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

MACT (Part 63), A: General Provisions

MACT (Part 63), ZZZZ: National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

MACT (Part 63), BBBBBB: National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities

Project Proposal

Modification to Approval Order to DAQE-AN143260008-22, to Update Equipment and Emissions

Project Description

Sawtooth has requested to add a 350 hp fire water pump engine, a 15,000 bbl ethanol tank, 17 pressurized storage tanks and four ethanol railcar unloading points to the existing facility. The 17 pressurized storage tanks are not emitting units, but the fugitives VOC emissions associated with the piping are considered part of the unit count on fugitive emissions. The emissions from the new equipment have been added to the emissions summary.

EMISSION IMPACT ANALYSIS

Modeling is not required as the emission increases are below the thresholds below those established in R307-410-4 and R307-410-5. The emission increase from this modification are 0.01 tons per year of PM_{10} , 0.03 tons per year of $PM_{2.5}$, 0.77 tons per year of NO_x , 0.39 tons per year of CO, 0.04 tons per year of SO_x, 0.78 tons per year of VOC, and 0.13 tons per year of combined HAP's emissions. [Last updated November 14, 2022]

SUMMARY OF EMISSIONS

The emissions listed below are an estimate of the total potential emissions from the source. Some rounding of emissions is possible.

Criteria Pollutant	Change (TPY)	Total (TPY)
CO ₂ Equivalent	197.77	2835.00
Carbon Monoxide	0.39	4.46
Nitrogen Oxides	0.77	2.18
Particulate Matter - PM ₁₀	0.01	2.72
Particulate Matter - PM _{2.5}	0.03	0.38
Sulfur Dioxide	0.04	0.05
Volatile Organic Compounds	0.78	31.08

Hazardous Air Pollutant	Change (lbs/yr)	Total (lbs/yr)
2,2,4-Trimethylpentane (CAS #540841)	460	460
Benzene (Including Benzene From Gasoline) (CAS #71432)	20	80
Ethyl Benzene (CAS #100414)	160	160
Generic HAPs (CAS #GHAPS)	-1680	2180
Hexane (CAS #110543)	60	120
Toluene (CAS #108883)	480	800
Xylenes (Isomers And Mixture) (CAS #1330207)	760	800
	Change (TPY)	Total (TPY)
Total HAPs	0.13	2.30

Note: Change in emissions indicates the difference between previous AO and proposed modification.

Review of BACT for New/Modified Emission Units

1. BACT review regarding Fire Pump, Ethanol Storage Tank and Unloading

Sawtooth has proposed installing a new fire water pump engine with a maximum power rating of 350 hp, a 15,000 bbl ethanol storage tank with four railcar unloading points at the Sawtooth natural gas liquids storage facility. Sawtooth analyzed the following control technology in the BACT analysis for the fire water pump: Selective Catalyst Reduction (SCR), Diesel Particulate Filters (DPF), Diesel Oxidation Catalyst (DOC), tier certified engines, limited use of ultra-low sulfur fuel, hours of operation, and good combustion practices. The Ethanol storage tank and railcar unloading points were reviewed for fugitive VOC emissions.

NO_x

 NO_x is the primary pollutant emitted from new fire water pump engine. The following control technologies were evaluated for NO_x : SCR, and use of EPA certified engines.

<u>SCR</u>

The SCR process works by chemically reducing the NO_x molecule in an emission stream into molecular nitrogen and water vapor. A reagent such as ammonia or urea is injected into the ductwork downstream of the combustion unit, which mixes with the waste gas, and the mixture enters a catalyst. The mixture diffuses through the catalyst and reacts selectively with the NO_x to reduce emissions. SCR systems are estimated to reduce NO_x emissions by up to 90%.

Sawtooth analyzed the use of SCR to control the NOx emissions on new fire water pump engine and SCR is technically feasible for the new fire water pump engine. The additional cost to install and maintain SCR on the fire water pump engine makes the use of SCR on fire water pump engine economically infeasible.

An ammonia slip is an additional consideration with the use of an SCR system. Ammonia slip occurs from unreacted ammonia, which occurs when excess reagent is needed to adequately control NO_x emissions. Ammonia slip increases over time as the catalyst degrades. This is a negative environmental impact which adds exclusion of SCR to the BACT determination.

Use EPA Certified Engines

Engines are required to meet certain emission limits, or tier ratings, based on the size and model year. Sawtooth proposed to use a fire water pump engine that meets EPA certification requirements for stationary applications.

Other Criteria Pollutants

PM, CO, VOCs, and SO₂ are also emitted from fire water pump engine. The following control technologies were identified.

Diesel Oxidation Catalyst

A diesel oxidation catalyst (DOC) utilizes a catalyst such as platinum or palladium to oxidize hydrocarbons and VOCs in the engine's exhaust to CO_2 and water. Use of a DOC can result in approximately 90 percent reduction in HC/VOC emissions. In addition to controlling HC/VOC a DOC also has the potential to control PM by 30 percent and CO by 50 percent if low sulfur diesel fuel is used. The technology is technically feasible; however, due to the minimal emissions from fire water pump engine it is not economically feasible.

Diesel Particulate Filters (DPF's)

This technology is placed in the exhaust pathway to prevent the release of particulate and may be

Engineer Review N143260009: Sawtooth Caverns, LLC - Sawtooth NGL Storage Facility December 1, 2022 Page 4 coated with a catalyst to further capture hydrocarbon emissions. The technology is technically feasible; however, due to the minimal emissions from fire water pump engine it is not economically feasible.

Ultra-Low Sulfur Diesel

Ultra-low sulfur diesel (ULSD) contains less than 0.0015 % sulfur by weight. The reduced sulfur content reduces the potential for SO_x emissions. The low sulfur content results in a lower potential for aggregation of sulfur containing compounds and reduces PM_{2.5} emissions. The use of ULSD is technically and economically feasible.

Good Combustion Practices

Good combustion practices refer to the operation of engines at high combustion efficiency, which reduces the products of incomplete combustion. The fire water pump engine is designed to achieve maximum combustion efficiency. The manufacturer will provide operation and maintenance manuals that detail the required methods to achieve the highest levels of combustion efficiency making good combustion practices technically feasible.

BACT Determination

DAQ has determined that BACT for the fire water pump engine will be met or exceeded as follows:

- 1) Use of EPA certified engine.
- 2) Use low-sulfur diesel fuel.
- 3) Conduct proper maintenance according to the manufacturer specifications.
- 4) Limit visible emissions to 20%.

The ethanol storage tank and railcar unloading points were reviewed for fugitive VOC emissions.

The ethanol storage tank is subject to NSPS Subpart Kb standards. The available control technology options to control VOC emissions include, a fixed roof tank with vapor combustion (95% control), an internal floating roof (IFR) tank, a domed external floating roof (DEFR) tank, and proper operations and maintenance.

The VOC emissions associated with the ethanol storage tank is 0.14 tons per year. BACT for the ethanol storage tanks is the installation of an internal floating roof in the tank and proper operations and maintenance.

The railcar loading activity will be subject to NESHAP Subpart BBBBBB and NSPS XX standards. The available control technology options include vapor combustion of loading operations (98.5% capture and control efficiency) and periodic Leak Detection and Repair (LDAR).

The VOC emissions associated with the unloading points are 0.09 tons per year. BACT for the unloading points is the use of LDAR program.

The added pressurized storage tanks are not considered an emitting unit by design but has valves, pumps, flanges, valves, and other components that could have fugitive VOC emissions which will are covered by sitewide LDAR. [Last updated November 14, 2022]

SECTION I: GENERAL PROVISIONS

The intent is to issue an air quality AO authorizing the project with the following recommended conditions and that failure to comply with any of the conditions may constitute a violation of the AO. (New or Modified conditions are indicated as "New" in the Outline Label):

I.1	All definitions, terms, abbreviations, and references used in this AO conform to those used in the UAC R307 and 40 CFR. Unless noted otherwise, references cited in these AO conditions refer to those rules. [R307-101]
I.2	The limits set forth in this AO shall not be exceeded without prior approval. [R307-401]
I.3	Modifications to the equipment or processes approved by this AO that could affect the emissions covered by this AO must be reviewed and approved. [R307-401-1]
I.4	All records referenced in this AO or in other applicable rules, which are required to be kept by the owner/operator, shall be made available to the Director or Director's representative upon request, and the records shall include the two-year period prior to the date of the request. Unless otherwise specified in this AO or in other applicable state and federal rules, records shall be kept for a minimum of two (2) years. [R307-401-8]
I.5	At all times, including periods of startup, shutdown, and malfunction, owners and operators shall, to the extent practicable, maintain and operate any equipment approved under this AO, including associated air pollution control equipment, in a manner consistent with good air pollution control practice for minimizing emissions. Determination of whether acceptable operating and maintenance procedures are being used will be based on information available to the Director which may include, but is not limited to, monitoring results, opacity observations, review of operating and maintenance procedures, and inspection of the source. All maintenance performed on equipment authorized by this AO shall be recorded. [R307-401-4]
I.6	The owner/operator shall comply with UAC R307-107. General Requirements: Breakdowns. [R307-107]
I.7	The owner/operator shall comply with UAC R307-150 Series. Emission Inventories. [R307-150]
I.8	The owner/operator shall submit documentation of the status of construction of tanks T-006 and T-007 to the Director within 18 months from the date of previous AO dated May 24, 2022. The owner/operator shall submit documentation of the status of construction or modification to the Director within 18 months from the date of this AO. This AO may become invalid if construction is not commenced within 18 months from the date of this AO or if construction is discontinued for 18 months or more. To ensure proper credit when notifying the Director, send the documentation to the Director, attn.: NSR Section. [R307-401- 18]

SECTION II: PERMITTED EQUIPMENT

The intent is to issue an air quality AO authorizing the project with the following recommended conditions and that failure to comply with any of the conditions may constitute a violation of the AO. (New or Modified conditions are indicated as "New" in the Outline Label):

II.A	THE APPROVED	EOUIPMENT

II.A.1	Sawtooth NGL Storage Facility
II.A.2	Emergency Generator Engine Rating: 144 hp Fuel: Diesel Manufacturer Date: 2016 Installation Date: 2016 NSPS Applicability: 40 CFR 60 Subpart IIII MACT Applicability: 40 CFR 63 Subpart ZZZZ
II.A.3	Emergency Generator Engine Rating: 144 hp Fuel: Diesel Manufacturer Date: 2016 Installation Date: 2016 NSPS Applicability: 40 CFR 60 Subpart IIII MACT Applicability: 40 CFR 63 Subpart ZZZZ
II.A.4 NEW	Fire Pump Engine (NEW) Rating: 350 hp Fuel: Diesel NSPS Applicability: 40 CFR 60 Subpart IIII MACT Applicability: 40 CFR 63 Subpart ZZZZ
II.A.5	Evaporation Ponds
II.A.6	Degassifier Vessel used to degas brine. Released gases controlled by integrated enclosed combustor.
II.A.7	Rail/Truck Loading and Unloading Equipment
II.A.8	Piping Fugitives Gasoline and diesel pipeline fugitive emission points, including: electric product pumps, pipeline connectors (flanges, valves, connectors) and ancillary equipment (pig launching and receiving equipment)
П.А.9	One Refined Fuel Loading Rack Capacity: 10,000 bbls per day Control: Vapor Combustion Unit MACT Applicability: Subpart BBBBBB NSPS Applicability: Subpart XX

П.А.10	Vapor Combustion Unit Rating: 40 MMBtu/hr Supplemental Fuel: Propane Controls: Refined Fuel/Ethanol Loading Racks NSPS Applicability: Subpart XX
II.A.11	Four Refined Product Storage Tanks RP T-004, RP T-005, RP T-006, RP T-007 Capacity: 1,000 bbls each
	Control: Internal floating roof NSPS Applicability: Subpart Kb
II.A.12	One Butane Vaporizer Rating: 2.53 MMbtu/hr Fuel: Propane
II.A.13 NEW	Ethanol Storage Tank (NEW) RP T-008 Capacity: 15,000 bbl Control: Internal floating roof NSPS Applicability: Subpart Kb
II.A.14 NEW	Four Ethanol Railcar Unloading Points (NEW) Control: Vapor Combustion Unit
II.A.15	Miscellaneous Storage Tanks 1 fixed roof tank for storage of tank bottoms 3 fixed roof tanks for storage of diesel additives 17 pressurized storage tanks (NEW) 1 wastewater tank (NEW)

SECTION II: SPECIAL PROVISIONS

The intent is to issue an air quality AO authorizing the project with the following recommended conditions and that failure to comply with any of the conditions may constitute a violation of the AO. (New or Modified conditions are indicated as "New" in the Outline Label):

REQUIREMENTS AND LIMITATIONS II.B

II.B.1	Site-wide Requirements
II.B.1.a	Unless otherwise specified in this AO, the owner/operator shall not allow visible emissions to
NEW	exceed the following opacity limits:
	 A. Diesel-fired emergency generators and fire pump engine - 20% B. Haul roads - 20% C. Degassifier combustor and the vapor combustion unit shall operate with no visible emissions D. All other points - 10%. [R307-401-8]

II.B.1.a.1 NEW	Unless otherwise specified in this AO, opacity observations of emissions from stationary sources shall be conducted in accordance with 40 CFR 60, Appendix A, Method 9. [R307-401-8]
II.B.1.a.2 NEW	Visible fugitive dust emission determinations shall use procedures similar to Method 9. The normal requirement for observations to be made at 15-second intervals over a six-minute period, however, shall not apply. Visible emissions shall be measured at the densest point of the plume but at a point not less than 1/2 vehicle length behind the vehicle and not less than 1/2 the height of the vehicle. [R307-401-8]
II.B.1.a.3 NEW	Visual determination of emissions from the combustor and vapor combustion unit shall be conducted according to 40 CFR 60, Appendix A, Method 22. [R307-401-8]
II.B.2	Brine Ponds Requirements
II.B.2.a	The owner/operator shall not extract more than 16,000,000 bbls of brine from the caverns per rolling 12-month period. [R307-401-8]
II.B.2.a.1 NEW	To determine compliance with a rolling 12-month total, the owner/operator shall:
	A. Calculate a new 12-month total using data from the previous 12 months.
	B. Determine the volume of extracted brine using monthly NGL throughput data.
	C. Keep records of extracted brine for all periods when the plant is in operation.
	D. Record volume of extracted brine on a monthly basis. [R307-401-8]
II.B.3	Combustor and Vapor Combustion Unit Requirements
II.B.3.a	The degassifier combustor, and the vapor combustion unit, shall be equipped with an operational auto-igniter. [R307-401-8]
II.B.3.b	The degassifier combustor shall be limited to 500 hours of downtime per rolling 12-month period for inspection, maintenance, and repair. No fluids shall be present in the degassifier during periods of flare downtime. [R307-401-8]
II.B.3.b.1	The owner/operator shall:
	A. Determine hours of downtime by monitoring and maintaining an operation log
	B. Record downtime in a monthly operator log
	C. Use records to calculate a new rolling 12-month total each month using data from the previous 12 months. [R307-401-8]
II.B.4 NEW	Engine Requirements

II.B.4.a	The owner/operator shall not exceed:
NEW	 A. 500 hours of operation per rolling 12-month total for the fire pump engine B. 100 hours of non-emergency situation operation per calendar year of the emergency generator engines
	There is no time limit on the use of the emergency generator engines during emergencies. [R307-401-8]
II.B.4.a.1 NEW	To determine compliance with calendar year engine requirement the owner/operator shall calculate total yearly use by the 20th day of January using data from the previous 12 months. To determine compliance with the rolling 12-month total the owner/operator shall calculate a new rolling 12-month total by the 20th day of each month using data from the previous 12 months. Records documenting the operation of the engines shall be kept in a log and shall include the following:
	A. The date the engines were used;
	B. The duration of operation each day in hours; and
	C. The reason for the emergency generator engine usage. [R307-401-8]
II.B.4.b NEW	Records of hours of operation shall be determined by installing a non-resettable hour meter for the engines. [R307-401-8]
II.B.4.c NEW	The owner/operator shall only use diesel fuel (fuel oil #1, #2 or diesel fuel oil additives) in the emergency generator engines and the fire pump engine. All diesel burned shall meet the requirements of 40 CFR 80.510(c). [40 CFR 60 Subpart IIII]
II.B.4.c.1	To demonstrate compliance with the fuel oil requirements, the owner/operator shall keep and maintain fuel purchase invoices. The fuel purchase invoices shall indicate that the diesel fuel meets the ultra-low sulfur diesel requirements, or the owner/operator shall obtain certification of sulfur content from the fuel supplier. [40 CFR 60 Subpart IIII]
II.B.5	Monitoring Requirements of Fugitive Emissions (Leak Detection and Repair)
II.B.5.a	The owner/operator shall develop a fugitive emissions monitoring plan. At a minimum, the plan shall include:
	A. Monitoring frequency. For equipment in gasoline service the monitoring frequency shall be no less than monthly as per 40 CFR 63 Subpart BBBBBB
	B. Monitoring technique and equipment
	C. Monitoring for "difficult-to-monitor" and "unsafe-to-monitor" components
	D. Procedures and time frames for identifying and repairing leaks
	E. Record keeping practices
	F. Calibration and maintenance procedures
	[40 CFR 63 Subpart BBBBBB, R307-401-8]

II.B.5.a.1	Monitoring shall be conducted according to the following schedule:
	A. No later than 60 days from the date of the final installation.
	B. Annually after the initial monitoring survey.
	C. Monthly for equipment in gasoline service.
	D. As required by the owner/operator's monitoring plan for "unsafe-to-monitor" components.
	[40 CFR 63 Subpart BBBBBB, R307-401-8]
II.B.5.b	If fugitive emissions are detected at any time, the owner/operator shall repair the fugitive emissions component as soon as possible but no later than 30 calendar days after detection (15 days for equipment in gasoline service).
	If the repair or replacement is technically infeasible without a process unit shutdown, the repair or replacement must be completed after an unscheduled, planned, or emergency unit shutdown or within 24 months, whichever is earlier.
	[40 CFR 63 Subpart BBBBBB, R307-401-8]
II.B.5.b.1	The owner/operator shall resurvey the repaired or replaced fugitive emissions component no later than 30 calendar days after the fugitive emissions component was repaired. [R307-401-8]
II.B.5.c	The owner/operator shall maintain records of the fugitive emissions monitoring plan, monitoring surveys, repairs, and resurveys. [R307-401-8]
II.B.6	Haul Road and Fugitive Dust Requirements
II.B.6.a	All unpaved roads and other unpaved operational areas that are used by mobile equipment shall be water sprayed and/or chemically treated to control fugitive dust when the ambient temperature is above freezing. Treatments shall be of sufficient frequency and quantity to meet the opacity limits listed in this AO, or as determined necessary by the Director. [R307-401-8]
II.B.6.a.1	Records of water/chemical treatment shall be kept for all periods when the facility is in operation. The records shall include the following items:
	A. Date of treatment;
	B. Number of treatments made; and
	C. Records of temperature if the temperature is below freezing. [R307-401-8]
II.B.6.b	Water/chemical treatment and opacity requirements for haul roads only apply to roads exclusive to and located within the Sawtooth NGL Storage Facility leased property. Roads located on SITLA or Magnum easements are not subject to the requirements of this AO. [R307-401-8]

II.B.7	Loading Requirements
II.B.7.a NEW	The owner/operator shall not exceed:
	A.15,120,000 gallons of ethanol per rolling 12-month period.
	B.153,000,000 gallons of refined fuel loading per rolling 12-month period.
	Refined fuel means gasoline, jet fuel, or diesel fuel. [R307-401-8]
II.B.7.a.1 NEW	The owner/operator shall:
	A. Determine fuel/ethanol loading volume by examination of company and/or customer billing records.
	B. Record fuel loading on a daily basis.
	C. Use the fuel/ethanol loading record to calculate a new rolling 12-month total by the 20th day of each month using data from the previous 12 months. [R307-401-8]
II.B.7.b	The owner/operator shall route all vapors from the refined fuel/ethanol loading racks through
NEW	the vapor combustion unit prior to venting to the atmosphere. [R307-401-8]
II.B.7.c	The owner/operator shall route all gasoline vapors displaced from tank trucks and railcars during product loading through the vapor combustion unit before venting to the atmosphere. [40 CFR 60 Subpart XX, R307-401-8]

PERMIT HISTORY

When issued, the approval order shall supersede (if a modification) or will be based on the following documents:

SupersedesAO DAQE-AN143260008-22 dated May 24, 2022Is Derived FromNOI dated June 2, 2022IncorporatesAdditional Information dated August 19, 2022

REVIEWER COMMENTS

1. Comment regarding Equipment List Update:

The source never installed or used the 50,000 bbl tanks requested in the AO DAQE-AN143260004-19. The storage tank emissions were recalculated with an updated throughput to reflect the installation of 2 additional 1000 bbl tanks versus the 50,000 bbl tanks. [Last updated July 12, 2022]

2. <u>Comment regarding Emission Estimates:</u>

Sawtooth has requested to install a new fire water pump engine, an ethanol storage tank with four railcar unloading points. The following are the emissions estimates for requested sources.

The new fire pump engine emissions estimates use 500 hours of operations limitation and emission factors from NSPS IIII and AP-42.

The ethanol storage tank with four railcar unloading points emissions estimates use a throughput of 169,327,200 gallons annually and emission equations and emissions factors from AP-42 Section 5.2, AP-42 Chapter 7 table 7.1-2, NSPS Subpart XX, program TANKS 4.0.9d and 40 CFR 98 Subpart C for GHG's.

The emissions from the pressurized tanks valves, pumps, flanges, valves, and other components have already been included into the unit count for VOC fugitive emissions. [Last updated November 14, 2022]

3. Comment regarding HAP emissions:

The previous AO identified some individual HAPs were not listed. This NOI clarified some HAPs that were included in this modification. The additional HAP emissions listed from the NOI came from the truck loading, HAP emissions on product speciation. [Last updated December 1, 2022]

4. <u>Comment regarding Applicable Regulations:</u>

The Sawtooth facility is subject to NSPS (Part 60), A: General Provisions, NSPS (Part 60), Kb: Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984, NSPS (Part 60), XX: Standards of Performance for Bulk Gasoline Terminals, NSPS (Part 60), IIII: Standards of Performance for Stationary Compression Ignition Internal Combustion Engines, MACT (Part 63), A: General Provisions MACT (Part 63), ZZZZ: National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines, and MACT (Part 63), BBBBBB: National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities. The new fire water pump engine is subject to 40 CFR 60 Subpart IIII and 40 CFR 63 subpart ZZZZ. The new ethanol storage tank is subject to 40 CFR 60 Subpart Kb. [Last updated November 14, 2022]

5. <u>Comment regarding Limited Use Fire Water Pump:</u>

Sawtooth has requested to classify the fire water pump engine as a limited use piece of equipment instead of an emergency piece of equipment. The fire water pump engine is limited to 500 hours per year of operation including maintenance and testing. [Last updated November 14, 2022]

6. Comment regarding Pressurized Storage Tanks:

During the latest compliance inspection from UDAQ, the compliance inspector noted 17 pressurized storage tanks that were not listed in the AO. Pressurized storage tanks are not emitting units but the pumps, flanges, valves, and other components for the pressurized storage tanks are considered emitting units under the fugitive VOC emissions under the LDAR program. The pressurized storage tanks are listed in the equipment list but do not have any AO requirements. [Last updated November 14, 2022]

7. <u>Comment regarding Wastewater Storage Tank:</u>

The equipment list has been updated with wastewater storage tanks. UDAQ considered miscellaneous storage tanks low (less than 0.01 VOC) emitting units or non-emitting units listed for informational purposes. These tanks do not have any AO requirements since the emissions are so low or nonexistent. [Last updated November 14, 2022]

8. <u>Comment regarding AO Rule Requirement Removal:</u>

State and federal rule requirement referencing fugitive dust and Subpart XX were removed from the AO. The State and Federal rule requirement are not required to listed in the AO for the source to be subject to them. They have been removed to minimize AO requirements. [Last updated November 18, 2022]

9. Comment regarding AO Requirement Update:

The visible emissions requirement has been combined and updated in this AO modification. The AO requirement that has equipment numerical references has been updated to remove specific numerical references. [Last updated November 14, 2022]

10. Comment regarding BACT Analysis:

The BACT analysis for this modification was conducted on the 500 hours of operations for the fire water pump engine. [Last updated November 14, 2022]

ACRONYMS

The following lists commonly used acronyms and associated translations as they apply to this document:

-	document:
40 CFR	Title 40 of the Code of Federal Regulations
AO	Approval Order
BACT	Best Available Control Technology
CAA	Clean Air Act
CAAA	Clean Air Act Amendments
CDS	Classification Data System (used by EPA to classify sources by size/type)
CEM	Continuous emissions monitor
CEMS	Continuous emissions monitoring system
CFR	Code of Federal Regulations
CMS	Continuous monitoring system
CO	Carbon monoxide
CO_2	Carbon Dioxide
CO_2e	Carbon Dioxide Equivalent - 40 CFR Part 98, Subpart A, Table A-1
COM	Continuous opacity monitor
DAQ/UDAQ	Division of Air Quality
DAQE	This is a document tracking code for internal UDAQ use
EPA	Environmental Protection Agency
FDCP	Fugitive dust control plan
GHG	Greenhouse Gas(es) - 40 CFR 52.21 (b)(49)(i)
GWP	Global Warming Potential - 40 CFR Part 86.1818-12(a)
HAP or HAPs	Hazardous air pollutant(s)
ITA	Intent to Approve
LB/HR	Pounds per hour
LB/YR	Pounds per year
MACT	Maximum Achievable Control Technology
MMBTU	Million British Thermal Units
NAA	Nonattainment Area
NAAQS	National Ambient Air Quality Standards
NESHAP	National Emission Standards for Hazardous Air Pollutants
NOI	Notice of Intent
NO _x	Oxides of nitrogen
NSPS	New Source Performance Standard
NSR	New Source Review
PM_{10}	Particulate matter less than 10 microns in size
PM _{2.5}	Particulate matter less than 2.5 microns in size
PSD	Prevention of Significant Deterioration
РТЕ	Potential to Emit
R307	Rules Series 307
R307-401	Rules Series 307 - Section 401
SO_2	Sulfur dioxide
Title IV	Title IV of the Clean Air Act
Title V	Title V of the Clean Air Act
TPY	Tons per year
UAC	Utah Administrative Code
VOC	Volatile organic compounds

Source:SawtoothSite:Natural gas StorageProject #:N14326-0009

	AN143260008-22	permit change	new AO
	TPY	TPY	TPY
PM10 Total	2.71	0.01	2.72
PM10 point	2.71	0.00	2.72
PM10 fugtive	2.48	0.00	2.48
PM2.5 Total	0.35	0.03	0.38
NOx	1.41	0.77	2.18
CO	4.07	0.39	4.46
SOx	0.01	0.04	0.05
VOC Total	30.30	0.78	31.08
VOC point	30.30	0.78	31.08
VOC Fugtive	1.65	0.00	1.65
HAPs	2.17	0.13	2.30
GHGs	2637.23	197.77	2835.00

HAP Summary Sheet						
Existing	Change	New				
TPY	TPY	TPY				
2.17	0.13	2.3				

Source: Site: Project #:		Sawtooth Natural gas N14326-00	-			
		Existing TPY	Change TPY	New TPY		
HAPs Totals	-	2.17000	0.13000	2.30000		
НАР		Existing TPY	Change TPY	New TPY	Existing lb/yr	Change Ib/yr
Acenaphthene Acetaldehyde Acetonitrile Acrolein Acrylonitrile Anthracene Arsenic Benzene Benzo-anthracene Benzo-[a]pyrene Benzo-[b]fluoranthene Benzo-[e]pyrene Benzo-[e]pyrene Benzo-perylene Benzo-[k]fluoranthene 1,3-Butadiene Carbon disulfide		0.03000	0.01000	0.04000		
Ethyl Benzene Formaldehyde Methanol		0.00000	0.08000	0.08000		
Hexane Hydrochloric Acid Mercury Compounds Styrene		0.03000	0.03000	0.06000		
2,2,4-Trimethylpentane Toluene Xylene Generic Metal HAPs		0.00000 0.16000 0.02000 1.93000	0.23000 0.24000 0.38000 -0.84000	0.23000 0.40000 0.40000 1.09000		
	Total	2.17000	0.13000	2.30000		

HAP's Modeling	Existing Source	Increase Source	New Source		Vert. Restricted (lb/l			
HAP	lb/hr	lb/hr	lb/hr	<20 m	20-50	50-100		
2,2,4-Trimethylpentane								
Acetaldehyde			0.00000	1.71155	2.29709	4.14376		
Acrolein			0.00000	0.00871	0.01169	0.02109		
Benzene			0.00000	0.02720	0.03510	0.06550		
Cobalt			0.00000	0.00100	0.00130	0.00250		

Ethylbenzene	0.00000	22.14000	28.66000	53.41000
Formaldehyde	0.00000	0.01400	0.01880	0.03390
Hex. Chromium	0.00000	0.00020	0.00020	0.00040
n-Hexane	0.00000	8.98810	11.63166	21.67718
Methanol	0.00000	14.20074	18.37742	34.24883
Naphthalene	0.00000	2.67000	3.46000	6.45000
Nickel	0.00000	0.00170	0.00220	0.00410
Toluene	0.00000	3.84000	4.97000	9.27000
Xylene	0.00000	22.14000	28.66000	53.41000

New	Change
lb/yr	lb/hr

hr/yr=

)		Vert. L	Modeling		
_	>100	<50	50-100	>100	Required
	8.10736	6.93630	10.08916	13.96268	
	0.04127	0.03531	0.05136	0.07108	
	0.14380	0.10540	0.12940	0.19650	
	0.00540	0.00400	0.00450	0.00740	

116.80000	85.97000	97.26000	159.78000
0.06630	0.05670	0.08250	0.11420
0.00090	0.00070	0.00080	0.00120
47.40781	34.89497	39.47714	64.85530
74.90192	55.13227	62.37186	102.46806
14.10000	10.38000	11.74000	19.29000
0.00900	0.00660	0.00810	0.01230
20.27000	14.92000	16.88000	27.73000
116.80000	85.97000	97.26000	159.78000

Re: Sawtooth Caverns Ethanol Modification

LaVern Choquette <vchoquette@bearcreekconsultants.com> To: Tad Anderson <tdanderson@utah.gov>

Tue, Nov 8, 2022 at 1:57 PM

Please classify it as limited use with 500 hours [Quoted text hidden]

Jacob Ries <jries@utah.gov>

Sawtooth Caverns Modification

LaVern Choquette <vchoquette@bearcreekconsultants.com> To: Jacob Ries <jries@utah.gov>, pgbushman@utah.gov

Fri, Aug 19, 2022 at 11:46 AM

Cc: David.robinson@sawtoothcaverns.com, Jonathan Lovell <jonathan.lovell@sawtoothcaverns.com>

Hi Jake:

Please find the BACT analysis for the fire water pump attached. Sawtooth recently had a visit for UDEQ's Paul Bushman. Paul mentioned that the pressurized propane / butane tanks could be mentioned in the permit general facility description. These vessels operate at 150 psi and do not vent to the atmosphere. The pressure relief valves, pumps, flanges, valves, and other components associated with the vessels are included in the Equipment Fugitives. For completeness, the pressure vessels include:

- Four 60,000-gallon propane vessels;
- Four 60,000-gallon butane vessels;
- Four 90,000-gallon butane vessels;
- Four 18,000-gallon butane vessels; and
- One 18,000-gallon propane vessel

Additionally, there is a 1,000-barrel wastewater tank that collects stormwater from the loading area. The tank could also collect spilled petroleum products. Wastewater tanks are generally exempt for air permitting. How does Utah handle these tanks?

Vern Choquette Principal Consultant Bear Creek Consultants 405-615-3757

...Think about things that are excellent and worthy of praise. -Phil 4:8

[Quoted text hidden]

Diesel Fire Pump BACT.pdf 192K

BEAR CREEK CONSULTANTS 1320 E. 9th Street, Suite 2 Edmond, OK 73034

Utah Department of Environmental Quality Division of Air Quality P.O. Box 144820 Salt Lake City, UT 84114-2820

Ref: Sawtooth Caverns, LLC Delta Storage Caverns Approval Order No. DAQE-AN143260006-21

Dear Sir or Madam:

Bear Creek Consultants (BCC) on the behalf of Sawtooth Caverns (Sawtooth) is pleased to submit the attached Notice of Intent Modification application for Sawtooth Caverns, LLC near Delta, Utah. This modification will make the following changes to the equipment at the facility:

- Add one 15,000-bbl IFR ethanol tank (RP T-008) and associated product loading emissions;
- Add four ethanol railcar unloading points (fugitive equipment); and
- Add one 350-hp fire water pump.

If you have any questions or comments, please contact Mr. David Robinson at (832) 489-8837 or me at (405) 531-0600.

Sincerely,

BEAR CREEK CONSULTANTS

Vern Choquette Principal Consultant

Attachments: Notice of Intent Modification application

June 13, 2022

NOTICE OF INTENT MODIFICATION

Sawtooth Caverns, LLC 9650 N 540 E Street Delta, Utah 84624

June 13, 2022

Prepared for:

Sawtooth Caverns, LLC 6965 South Union Park Center #270 Midvale, UT 84047

Prepared by:

BEAR CREEK CONSULTANTS 1320 E. 9th Street, Suite 2 Edmond, OK 73034

TABLE OF CONTENTS

			IVE SUMMARY L REGULATIONS	
3.0	U٦		IR POLLUTION CONTROL RULES	5
			AILABLE CONTROL TECHNOLOGY (BACT)	
		_	for the Gasoline Tanks	-
4.	2	BACT f	for Gasoline Loading	7
4.	3	BACT f	for Fugitive Equipment Leaks	7
5.0	Pr	oject D	Description	8

LIST OF APPENDICES

	Appendix A	Emissions Calculations
--	------------	------------------------

Appendix B Utah DAQ Forms

1.0 EXECUTIVE SUMMARY

Sawtooth Caverns, LLC (Sawtooth) owns and operates a Liquid Petroleum Gas (LPG) storage facility near Delta, Utah. The facility currently consists of multiple salt caverns (maximum total throughput of 16,000,000 barrels), brine storage ponds, railcar loading and unloading equipment, a brine degassifier, and an emergency generator.

Sawtooth would like to add the following equipment to DAQE-AN143260006-21:

- One 15,000-bbl IFR ethanol tank (RP T-008) and associated product loading emissions;
- Four ethanol railcar unloading points (fugitive equipment); and
- One 350-hp fire water pump.

Table 1-1 presents the emissions associated with this modification, including quantifiable maintenance emissions. Changes to facility emissions points are highlighted in yellow.

	PM	PM10	PM2.5	NOx	СО	SO2	VOC	HAPs	CO ₂ e
Totals	3.15	2.72	0.38	2.18	4.46	0.05	31.08	2.30	2,835
Brine Ponds							9.61	0.00	
Product Storage Tanks							6.72	0.43	
NGL Truck/Rail Loading/Unloading							0.75	0.00	
Equipment Fugitives							1.88	0.01	
Road Dust	2.48	2.48	0.25						
Degassifier	0.00	0.00	0.00	0.09	0.36	0.000	0.01	0.00	101
Butane Vaporizer	0.08	0.08	0.08	0.75	0.91	0.003	0.06	0.00	1,498
Emergency Generator	0.004	0.004	0.004	0.22	0.03	0.01	0.003	0.000	15
Fire Pump	0.010	0.010	0.029	0.55	0.07	0.03	0.008	0.001	92
Refined Products Loading	0.00	0.00	0.00	0.57	3.09	0.001	5.71	1.35	1,129
Maintenance (incl roof landings)	0.57	0.13	0.01				6.33	0.51	0

Table 1-1. Facility Emissions

2.0 FEDERAL REGULATIONS

Prevention of Significant Deterioration (PSD), 40 CFR Part [Not Applicable]

The facility will be a PSD minor source with total VOC emissions less than 100 TPY. Therefore, a PSD review is not included.

NSPS, 40 CFR Part 60

[Applicable]

Subpart A requires the submittal of several notifications for NSPS-affected sources. For example, a notification of the actual date of initial startup of any affected facility will be submitted within 15 days after such date. If required, initial performance tests are to be conducted within 60 days of achieving the maximum production rate, but not later than 180 days after initial startup of the facility. The facility must notify at least 30 days prior to any initial performance test and must submit the results of the initial performance tests to UDAQ. The facility will meet the applicable notification requirements under this Subpart.

Subpart Kb affects VOC storage tanks constructed after July 23, 1984, with a capacity greater than or equal to 75 m3 (19,813 gal). The new 15,000-bbl IFR ethanol tank is subject to this regulation and will comply with the monitoring and recordkeeping requirements of this subpart.

Subpart XX Standards of Performance for Bulk Gasoline Terminals affects loading racks. Sawtooth will comply with the applicable requirements of this subpart.

Subpart IIII Standards of Performance for Stationary Compression Ignition Internal Combustion Engines affects both the emergency generator and the new fire pump. Sawtooth will comply with the applicable requirements of this subpart.

NESHAP, 40 CFR Part 61

There are no emissions of the regulated pollutants: arsenic, asbestos, beryllium, coke oven emissions, radionuclides, or vinyl chloride. The facility will emit benzene in extremely small quantities; however, the facility is not one of the listed affected sources and is, therefore, exempt from this Part.

NESHAP, 40 CFR Part 63

Potential HAP emissions from the facility are below the 10/25 TPY major source thresholds as shown in the emissions section. Based on emission calculations this facility is not a Major Source of HAPs but is considered an Area Source.

Subpart ZZZZ, Reciprocating Internal Combustion Engines (RICE). This rule affects new or reconstructed engines at area sources. Both the emergency generator and fire water pump are affected sources.

Subpart BBBBBB, This subpart establishes national emission limitations and management practices for hazardous air pollutants (HAP) emitted from area source gasoline distribution bulk terminals, bulk plants, and pipeline facilities. This facility and the modification will comply with the applicable provisions of this subpart.

[Not Applicable]

[Applicable]

Subpart R This facility and the modification will not be subject to these control requirements since it is an Area Source instead of a Major Source of HAPs.

CAM, 40 CFR Part 64

[Not Applicable]

Compliance Assurance Monitoring (CAM) applies to any pollutant-specific emission unit at a major source that is required to obtain a Title V permit, if it meets all of the following criteria:

- It is subject to an emission limit or standard for an applicable regulated air pollutant.
- It uses a control device to achieve compliance with the applicable emission limit or standard.
- It has potential emissions, prior to the control device, of the applicable regulated air pollutant of greater than 100 TPY.

This facility is a not a major source, so CAM does not apply.

Chemical Accident Prevention Provisions, 40 CFR Part 68 [Applicable]

The Sawtooth facility stores more than 10,000 pounds of propane is and subject to Risk Management Plan (RMP) requirements. The facility complies with the applicable provisions of this regulation.

Stratospheric Ozone Protection, 40 CFR Part 82 [Not Applicable]

The facility does not produce, consume, recycle, import, or export any of the controlled substances or controlled products as defined in this part, nor will service on motor (fleet) vehicles, which involves ozone-depleting substances, be performed. Therefore, as currently operated, the facility is not subject to these requirements.

3.0 **UTAH AIR POLLUTION CONTROL RULES**

R307-101 to 107 (General Requirements and Procedures) [Applicable]

Facility will comply with applicable general requirements and procedures.

R307-110 (State Implantation Plan)

Subchapter 110 enumerates the incorporation by reference, permitting requirements, source surveillance, ambient air quality standards, prevention of significant deterioration, and other programs agreed upon by the UDEQ to comply with U.S. EPA air quality requirements.

R307-201 to 205 (Emissions Standards)

Subchapters 201-205 establish emission standards for all areas of the state.

R307-210 (NSPS)

Subchapter 210 Incorporates New Source Performance Standards except for Subparts Cb, Cc, Cd, Ce, BBBB, DDDD, and HHHH in 40 CFR Part 60 by reference.

R307-214 (**NESHAPs**)

Subchapter 214 Incorporate the National Emission Standards for Hazardous Air Pollutants in 40 CFR Parts 61 and 63 by reference.

R307-401 (Permits for New and Modified Sources)

Subchapter 401 sets forth the basic substantive requirements of permits for minor facilities. The criteria pollutant emissions are less than 100 TPY, and emissions of HAPs will not exceed 10 TPY for any one HAP or 25 TPY for any aggregate of HAP, so the facility is defined as a minor source.

R307-503 (Oil and Gas Industry: Flares)

Subchapter 503 sets forth establishes conditions to ensure that flares used in the oil and gas industry are operated effectively. The site is not an oil and gas exploration and production operation, a well site, a natural gas compressor station, or a natural gas processing plant; so, this rule does not apply.

R307-506 (Oil and Gas Industry: Storage Vessels) [Not Applicable]

Subchapter 506 sets forth establishes conditions to control emissions of volatile organic compounds (VOCs) from storage vessels associated with a well site. This site is not a well site, so this subchapter does not apply.

[Applicable]

[Not Applicable]

[Applicable]

[Applicable]

[Applicable]

[Applicable]

4.0 BEST AVAILABLE CONTROL TECHNOLOGY (BACT)

Per UACR R307-401-8, the proposed new equipment (i.e., gasoline tanks, truck loading spots, and fugitives) must consider best available control technology (BACT). Per Utah's BACT Guidelines, the following five criteria were used to analyze BACT for every facility, operation, or process that proposes any activity that would emit an air contaminant into the air:

- 1. Energy Impacts
- 2. Environmental Impacts
- 3. Economic Impacts
- 4. Other Considerations
- 5. Cost Calculation

4.1 BACT for the Ethanol Tank

The ethanol storage tank is subject to NSPS Subpart Kb standards. Sawtooth is proposing the installation of an internal floating roof in the tank. The proposed BACT is therefore required to be at least as stringent as, or more stringent than, the NSPS standard. The available control technology options include:

- 1. A fixed roof tank with vapor combustion (95% control)
- 2. An internal floating roof (IFR) tank
- 3. A domed external floating roof (DEFR) tank

Energy Impacts

The fixed roof tank with vapor combustion has a greater energy impact than either the IFR or DEFR tank because the combustor would require supplemental fuel to maintain combustion temperature. The vapor combustor is also an active system (i.e., add-on control) versus a passive system (i.e., floating roofs are intrinsic to the design and operation of the IFR and DEFR tanks).

Environmental Impacts

The vapor combustion system is less efficient (i.e., 96% control versus 99%+ control) and has a greater environmental impact because it adds products of combustion (i.e., NO_x , CO) to the environment.

Economic Impacts

Economic impacts were not evaluated because the proposed IFR tank is more expensive than a fixed roof tank with a vapor combustor.

Other Considerations

There are no special circumstances impacting this BACT analysis.

4.2 BACT for Gasoline Loading

The gasoline loading activity will be subject to NESHAP Subpart BBBBBB and NSPS XX standards. Sawtooth is proposing no additional control measures. The available control technology options include:

- 1. Vapor combustion of loading operations (98.5% capture and control efficiency)
- 2. Periodic Leak Detection and Repair (LDAR)

Energy Impacts

The vapor combustor for gasoline loading is the standard method of control.

Environmental Impacts

The vapor combustion system is demonstrated to have the preferred environmental impact since it has been specified by EPA as the Maximum Achievable Control Technology (MACT) standard. Periodic LDAR is also included in this standard.

Economic Impacts

The evaluation of the economic impacts is not appropriate since there are no other feasible BACT options.

Other Considerations

There are no special circumstances impacting this BACT analysis.

Cost Calculation

A cost calculation is not appropriate since there are no other feasible BACT options.

Conclusion

The vapor combustor controlling gasoline loading with periodic LDAR is the best option considering energy and environmental impacts.

4.3 BACT for Fugitive Equipment Leaks

The fugitive equipment (i.e., valves, flanges, pumps, connectors, etc.) are subject both to the control provisions of NESHAP Subpart BBBBBB - *National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities* and annual Method 21 leak detection monitoring contained in the air permit. Sawtooth is proposing the LDAR outlined in MACT BBBBBB and the air permit as BACT. No further analysis is required.

5.0 **Project Description**

Sawtooth Caverns, LLC (Sawtooth) owns and operates a Liquid Petroleum Gas (LPG) storage facility near Delta, Utah. The facility currently consists of multiple salt caverns (maximum total throughput of 16,000,000 barrels), brine storage ponds, railcar loading and unloading equipment, a brine degassifier, and an emergency generator. Sawtooth obtained a modification (DAQE-AN143260006-21) to install equipment to unload store, and load refined petroleum products (i.e., gasoline and diesel in February of 2021.

Sawtooth also submitted an NOI modification in February of 2022 to adjust refined products equipment at the site. This NOI modification will make the following changes to the equipment at the facility:

- Add one 15,000-bbl IFR ethanol tank (RP T-008) and associated product loading emissions;
- Add four ethanol railcar unloading points (fugitive equipment); and
- Add one 350-hp fire water pump.

Sawtooth is hoping to have this project installed by October of 2022.

Appendix A: Emissions Calculations

Facility Emissions Summary

	PM	PM10	PM2.5	NOx	CO	SO2	VOC	HAPs	CO ₂ e
Totals	<i>3.15</i>	2.72	0.38	<u>2.18</u>	4.46	0.05	<u>31.08</u>	2.30	2,835.32
Brine Ponds							9.61	0.00	
Product Storage Tanks							6.72	0.43	
NGL Truck/Rail Loading/Unloading							0.75	0.00	
Equipment Fugitives							1.88	0.01	
Road Dust	2.48	2.48	0.25						
Degassifier	0.00	0.00	0.00	0.09	0.36	0.000	0.01	0.00	100.96
Butane Vaporizer	0.08	0.08	0.08	0.75	0.91	0.003	0.06	0.00	1,498.34
Emergency Generator	0.004	0.004	0.004	0.22	0.03	0.01	0.003	0.000	15.46
Fire Pump	0.010	0.010	0.029	0.55	0.07	0.03	0.008	0.001	91.57
Refined Products Loading	0.00	0.00	0.00	0.57	3.09	0.001	5.71	1.35	1,128.61
Maintenance (incl roof landings)	0.57	0.13	0.01				6.33	0.51	0.39

Annual Tank Emissions

EPN	Product	Capacity	Turnovers	Throughput	VOC Emissions ¹		Hexane	Benzene	Toluene	1,2,4, TMB	Xylene	Ethylbenzne
		gal		gal	(lb/yr)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)
Slop T-003	Gasoline/Water	18,189	12	218,268	40.66	0.02	0.00	0.00	0.00	0.00	0.00	0.00
RP T-004	Gasoline/Diesel	21,000	1825	38,325,000	2683.97	1.34	0.01	0.01	0.04	0.01	0.04	0.01
RP T-005	Gasoline/Diesel	21,000	1825	38,325,000	2683.97	1.34	0.01	0.01	0.04	0.01	0.04	0.01
RP T-006	Gasoline/Diesel	21,000	1825	38,325,000	2683.97	1.34	0.01	0.01	0.04	0.01	0.04	0.01
RP T-007	Gasoline/Diesel	21,000	1825	38,325,000	2683.97	1.34	0.01	0.01	0.04	0.01	0.04	0.01
RP T-008	Ethanol	630,000	24	15,120,000	283.92	0.14	0.00	0.00	0.00	0.00	0.00	0.00
Additive 001	Additive	12,600	24	302,400	804.31	0.40	0.013	0.003	0.003	0.006	0.001	0.000
Additive 002	Additive	12,600	24	302,400	804.31	0.40	0.013	0.003	0.003	0.006	0.001	0.000
Additive 003	Additive	12,600	24	302,400	804.31	0.40	0.013	0.003	0.003	0.006	0.001	0.000
Total:						6.72	0.07	0.03	0.16	0.07	0.14	0.03
Notos:		•		160 327 200								

Notes:

169,327,200

¹ Based upon AP-42 Chapter 7 (06/20) Equations.

Equipment Leak Fugitives Potential Emissions Calculations

Assumptions: (1) Operation is assumed to be 8760 hours per year (2) Item type counts are estimates based on P&IDs provided. Conservatively assumed 4 connectors/flanges per valve. (3) If gas/vapor vs. liquid is unknown (or potentially both), worst case is assumed (4) Conservatively assumed 3 connectors and flanges per valve.

Emission	Factors

Emission Factors		
Emissions Source Equipment	Emission Factor	
Туре	(lb/hr/source)	References
Light Liquid Valve	9.48E-05	EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates (Table 2-3, Marketing Terminals Average Emission Factors)
Gas/Vapor Valve	2.87E-05	EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates (Table 2-3, Marketing Terminals Average Emission Factors)
Gas Relief Valve (Other)	2.65E-04	EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates (Table 2-3, Marketing Terminals Average Emission Factors)
Pump	1.43E-04	EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates (Table 2-3, Marketing Terminals Average Emission Factors)
Compressor	2.65E-04	EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates (Table 2-3, Marketing Terminals Average Emission Factors)
Light Liquid Other	2.87E-04	EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates (Table 2-3, Marketing Terminals Average Emission Factors)
Gas/Vapor Other	2.65E-04	EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates (Table 2-3, Marketing Terminals Average Emission Factors)
Light Liquid Connector	1.76E-05	EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates (Table 2-3, Marketing Terminals Average Emission Factors)
Gas/Vapor Connector	9.26E-05	EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates (Table 2-3, Marketing Terminals Average Emission Factors)
Light Liquid Flange	1.76E-05	EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates (Table 2-3, Marketing Terminals Average Emission Factors)
Gas/Vapor Flange	9.26E-05	EPA-453/R-95-017 Protocol for Equipment Leak Emission Estimates (Table 2-3, Marketing Terminals Average Emission Factors)

Control Efficiencies Used

ſ	Control Type	Control Efficiency	References								
ſ	None	0.00	No Leak Detection and Repair Program, therefore no control used.								

Product Speciation

Propane Product C	Overall	Propane P	roduct C6+	Butane Pro	oduct Overall	Butane P	roduct C6+	RGB Produ	uct Overall	RGB Product C6+	
Component	Weight Percent	HAP Component	Weight Percent of Total	Component	Weight Percent	HAP Component	Weight Percent of Total	Component	Weight Percent	HAP Component	Weight Percent of Total
Methane		n-Hexane	0.0000	Methane		n-Hexane	0.1000	Methane		n-Hexane	0.1000
Carbon Dioxide		Benzene	0.0000	Carbon Dioxide		Benzene	0.0000	Carbon Dioxide		Benzene	0.0000
Ethane		Toluene	0.0000	Ethane		Toluene	0.0000	Ethane		Toluene	0.0000
Propane	90.5	Ethylbenzene	0.0000	Propane	2.5	Ethylbenzene	0.0000	Propane	2.0	Ethylbenzene	0.0000
Iso-Butane		o-Xylene	0.0000	Iso-Butane	6.0	o-Xylene	0.0000	Iso-Butane	15.0	o-Xylene	0.0000
Normal-Butane	2.5	m,p-Xylene	0.0000	Normal-Butane	94.0	m,p-Xylene	0.0000	Normal-Butane	75.0	m,p-Xylene	0.0000
Isopentane				Isopentane				Isopentane			
n-Pentane				n-Pentane	3.0			n-Pentane	15.0		
Propylene	5.0			Propylene				Propylene	1.0		
								C4 Olefin	5.0		
Hexanes+				Hexanes+	0.1			Hexanes+	0.1		

Potential Emissions Calculation	ns					I	Annual Emissi	ons (tpy)	
Component Type	Number of Components	Weight Percent VOC	Emission Factor (Ib/hr/source)	Control Efficiency	VOC (lb/hr)	voc	Total HAP	n-Hexane	BTEX
Cavern Wells #5, #6, #7, & #8 (nc. Pumps)								
Light Liquid Valve	120	100	9.48E-05	0.00	1.14E-02	0.050	4.98E-03	4.98E-03	
Gas/Vapor Valve	12	100	2.87E-05	0.00	3.44E-04	0.002	1.51E-04	1.51E-04	
Relief Valves	20	100	2.65E-04	0.00	5.29E-03	0.023	2.32E-03	2.32E-03	
Pumps	8	100	1.43E-04	0.00	1.15E-03	0.005	5.02E-04	5.02E-04	
Compressors		100	2.65E-04	0.00	0.00E+00	0.000		0.00E+00	
Light Liquid Conns	360	100	1.76E-05	0.00	6.35E-03	0.028	2.78E-03	2.78E-03	
Gas/Vapor Conns	36	100	9.26E-05	0.00	3.33E-03	0.015	1.46E-03	1.46E-03	
Light Liquid Flange	360	100	1.76E-05	0.00	6.35E-03	0.028	2.78E-03	2.78E-03	
Gas/Vapor Flange	36	100	9.26E-05	0.00	3.33E-03	0.015	1.46E-03	1.46E-03	
Salt Dryers, Coalescer, and Af	terfilter								
Light Liquid Valve	54	100	9.48E-05	0.00	5.12E-03	0.022	2.24E-03	2.24E-03	
Gas/Vapor Valve	3	100	2.87E-05	0.00	8.60E-05	0.000	3.77E-05	3.77E-05	
Relief Valves	7	100	2.65E-04	0.00	1.85E-03	0.008	8.11E-04	8.11E-04	
Pumps		100	1.43E-04	0.00	0.00E+00	0.000		0.00E+00	
Compressors		100	2.65E-04	0.00	0.00E+00	0.000		0.00E+00	
Light Liquid Conns	162	100	1.76E-05	0.00	2.86E-03	0.013	1.25E-03	1.25E-03	
Gas/Vapor Conns	9	100	9.26E-05	0.00	8.33E-04	0.004	3.65E-04	3.65E-04	
Light Liquid Flange	162	100	1.76E-05	0.00	2.86E-03	0.013	1.25E-03	1.25E-03	
Gas/Vapor Flange	9	100	9.26E-05	0.00	8.33E-04	0.004	3.65E-04	3.65E-04	
Mercaptan Truck & Rail Loadir	Ig								
Light Liquid Valve	14	100	9.48E-05	0.00	1.33E-03	0.006	0.00E+00		
Gas/Vapor Valve	25	100	2.87E-05	0.00	7.17E-04	0.003	0.00E+00		
Relief Valves	2	100	2.65E-04	0.00	5.29E-04	0.002	0.00E+00		
Pumps		100	1.43E-04	0.00	0.00E+00	0.000			
Compressors	8	100	2.65E-04	0.00	2.12E-03	0.009	0.00E+00		
Light Liquid Conns	42	100	1.76E-05	0.00	7.41E-04	0.003	0.00E+00		
Gas/Vapor Conns	75	100	9.26E-05	0.00	6.94E-03	0.030	0.00E+00		
Light Liquid Flange	42	100	1.76E-05	0.00	7.41E-04	0.003	0.00E+00		
Gas/Vapor Flange	75	100	9.26E-05	0.00	6.94E-03	0.030	0.00E+00		-
Truck Loading, Unloading									
Light Liquid Valve	72	100	9.48E-05	0.00	6.83E-03	0.030	2.99E-03	2.99E-03	

Equipment Leak Fugitives Potential Emissions Calculations

Equipment Leak Fu	gitives Poter								
Gas/Vapor Valve	4	100	2.87E-05	0.00	1.15E-04	0.001	5.02E-05	5.02E-05	
Relief Valves	14	100	2.65E-04	0.00	3.70E-03	0.016	1.62E-03	1.62E-03	
Pumps		100	1.43E-04	0.00	0.00E+00	0.000		0.00E+00	
Compressors		100	2.65E-04	0.00	0.00E+00	0.000		0.00E+00	
Light Liquid Conns	216	100	1.76E-05	0.00	3.81E-03	0.017	1.67E-03	1.67E-03	
Gas/Vapor Conns	12	100	9.26E-05	0.00	1.11E-03	0.005	4.87E-04	4.87E-04	
Light Liquid Flange	216	100	1.76E-05	0.00	3.81E-03	0.017	1.67E-03	1.67E-03	
Gas/Vapor Flange	12	100	9.26E-05	0.00	1.11E-03	0.005	4.87E-04	4.87E-04	
Loading Pumps									
Light Liquid Valve	79	100	9.48E-05	0.00	7.49E-03	0.033	3.28E-03	3.28E-03	
Gas/Vapor Valve		100	2.87E-05	0.00	0.00E+00	0.000		0.00E+00	
Relief Valves	22	100	2.65E-04	0.00	5.82E-03	0.025	2.55E-03	2.55E-03	
Pumps	7	100	1.43E-04	0.00	1.00E-03	0.004	4.39E-04	4.39E-04	
Compressors		100	2.65E-04	0.00	0.00E+00	0.000		0.00E+00	
Light Liquid Conns	237	100	1.76E-05	0.00	4.18E-03	0.018	1.83E-03	1.83E-03	
Gas/Vapor Conns	0	100	9.26E-05	0.00	0.00E+00	0.000	0.00E+00	0.00E+00	
Light Liquid Flange	237	100	1.76E-05	0.00	4.18E-03	0.018	1.83E-03	1.83E-03	
Gas/Vapor Flange	0	100	9.26E-05	0.00	0.00E+00	0.000	0.00E+00	0.00E+00	
Piping Manifolds									
Light Liquid Valve	26	100	9.48E-05	0.00	2.46E-03	0.011	1.08E-03	1.08E-03	
Gas/Vapor Valve		100	2.87E-05	0.00	0.00E+00	0.000		0.00E+00	
Relief Valves	7	100	2.65E-04	0.00	1.85E-03	0.008	8.11E-04	8.11E-04	
Pumps		100	1.43E-04	0.00	0.00E+00	0.000		0.00E+00	
Compressors		100	2.65E-04	0.00	0.00E+00	0.000		0.00E+00	
Light Liquid Conns	78	100	1.76E-05	0.00	1.38E-03	0.006	6.03E-04	6.03E-04	
Gas/Vapor Conns	0	100	9.26E-05	0.00	0.00E+00	0.000	0.00E+00	0.00E+00	
Light Liquid Flange	78	100	1.76E-05	0.00	1.38E-03	0.006	6.03E-04	6.03E-04	
Gas/Vapor Flange	0	100	9.26E-05	0.00	0.00E+00	0.000	0.00E+00	0.00E+00	
Propane Storage Tanks									
Light Liquid Valve	114	100	9.48E-05	0.00	1.08E-02	0.047	0.00E+00	ļ	
Gas/Vapor Valve	95	100	2.87E-05	0.00	2.72E-03	0.012	0.00E+00		
Relief Valves	6	100	2.65E-04	0.00	1.59E-03	0.007	0.00E+00		
Pumps		100	1.43E-04	0.00	0.00E+00	0.000			
Compressors		100	2.65E-04	0.00	0.00E+00	0.000			
Light Liquid Conns	342	100	1.76E-05	0.00	6.03E-03	0.026	0.00E+00		
Gas/Vapor Conns	285	100	9.26E-05	0.00	2.64E-02	0.116	0.00E+00		
Light Liquid Flange	342	100	1.76E-05	0.00	6.03E-03	0.026	0.00E+00		
Gas/Vapor Flange	285	100	9.26E-05	0.00	2.64E-02	0.116	0.00E+00		
Refined Products Storage Tanks									
Light Liquid Valve	55	100	9.48E-05	0.00	5.21E-03	0.023	1.00E-01	3.65E-02	6.39E-02
Relief Valves	6	100	2.65E-04	0.00	1.59E-03	0.007	3.06E-02	1.11E-02	1.95E-02
Pumps	10	100	1.43E-04	0.00	1.43E-03	0.006	2.76E-02	1.00E-02	1.76E-02
Light Liquid Conns	165	100	1.76E-05	0.00	2.91E-03	0.013	5.61E-02	2.04E-02	3.57E-02
Light Liquid Flange	165	100	1.76E-05	0.00	2.91E-03	0.013	5.61E-02	2.04E-02	3.57E-02
Refined Products Loading Rack	k								
Light Liquid Valve	120	100	9.48E-05	0.00	1.14E-02	0.050	2.19E-01	7.97E-02	1.40E-01
Relief Valves	12	100	2.65E-04	0.00	3.17E-03	0.014	6.12E-02	2.22E-02	3.89E-02
Pumps	8	100	1.43E-04	0.00	1.15E-03	0.005	2.21E-02	8.03E-03	1.41E-02
Light Liquid Conns	360	100	1.76E-05	0.00	6.35E-03	0.028	1.22E-01	4.45E-02	7.79E-02
Light Liquid Flange	360	100	1.76E-05	0.00	6.35E-03	0.028	1.22E-01	4.45E-02	7.79E-02
Ethanol Railcar Unloading Area									
Light Liquid Valve	96	100	9.48E-05	0.00	9.10E-03	0.040			
Relief Valves	10	100	2.65E-04	0.00	2.65E-03	0.012			
Pumps	4	100	1.43E-04	0.00	5.73E-04	0.003			
Light Liquid Conns	288	100	1.76E-05	0.00	5.08E-03	0.022			
Light Liquid Flange	288	100	1.76E-05	0.00	5.08E-03	0.022			
Compressors									
Light Liquid Valve	68	100	9.48E-05	0.00	6.45E-03	0.028	2.82E-03	2.82E-03	
Gas/Vapor Valve	47	100	2.87E-05	0.00	1.35E-03	0.006	5.90E-04	5.90E-04	
Relief Valves	24	100	2.65E-04	0.00	6.35E-03	0.028	2.78E-03	2.78E-03	
Pumps		100	1.43E-04	0.00	0.00E+00	0.000		0.00E+00	
Compressors	8	100	2.65E-04	0.00	2.12E-03	0.009	9.27E-04	9.27E-04	
Light Liquid Conns	204	100	1.76E-05	0.00	3.60E-03	0.016	1.58E-03	1.58E-03	
Gas/Vapor Conns	141	100	9.26E-05	0.00	1.31E-02	0.057	5.72E-03	5.72E-03	
Light Liquid Flange	204	100	1.76E-05	0.00	3.60E-03	0.016	1.58E-03	1.58E-03	
Gas/Vapor Flange	141	100	9.26E-05	0.00	1.31E-02	0.057	5.72E-03	5.72E-03	
Rail Loading									
Light Liquid Valve	274	100	9.48E-05	0.00	2.60E-02	0.114	1.14E-02	1.14E-02	
Gas/Vapor Valve	82	100	2.87E-05	0.00	2.35E-03	0.010	1.03E-03	1.03E-03	
Relief Valves	40	100	2.65E-04	0.00	1.06E-02	0.046	4.63E-03	4.63E-03	
Pumps		100	1.43E-04	0.00	0.00E+00	0.000		0.00E+00	
Compressors		100	2.65E-04	0.00	0.00E+00	0.000		0.00E+00	
Light Liquid Conns	822	100	1.76E-05	0.00	1.45E-02	0.063	6.35E-03	6.35E-03	
Gas/Vapor Conns	246	100	9.26E-05	0.00	2.28E-02	0.100	9.98E-03	9.98E-03	
	246 822	100 100	1.76E-05	0.00	2.28E-02 1.45E-02	0.063	9.98E-03 6.35E-03	9.98E-03 6.35E-03	
Gas/Vapor Conns									

Emergency Generator Sawtooth NGL Caverns, LLC

Engine Make / Model	TBD	TBD
Generator Make / Model	TBD	TBD
Date of construction/instalation	2015	2015 or newer
Subpart IIII EPA Emissions	Tier 3	Tier 3
Control Device	(none)	(none)
Nameplate Horse Power	144 HP	350 HP
Fuel Consumption	7.3 gph	34.0 gph
Annual Operating Hours ¹	500 hours	500 hours
NO _x Factor ²	2.83 g/hp-hr	2.83 g/hp-hr
CO Factor ²	0.38 g/hp-hr	0.38 g/hp-hr
NMNEHC (VOC) Factor ²	0.04 g/hp-hr	0.04 g/hp-hr
PM10 Factor ²	0.05 g/hp-hr	0.05 g/hp-hr
SO ₂ Factor ²	0.15 g/hp-hr	0.15 g/hp-hr
CO _{2e} Factor ³	1.15 lb/hp-hr	1.15 lb/hp-hr
Formaldehyde Factor ³	0.00118 lb/Mmbtu	0.00118 lb/Mmbtu

Pollutant	lb/hr	Expected tpy	lb/hr	Expected tpy
NOx	0.90	0.224	2.18	0.546
СО	0.12	0.030	0.29	0.073
VOC	0.01	0.003	0.03	0.008
PM10	0.02	0.004	0.04	0.010
SO ₂	0.05	0.012	0.12	0.029
CO ₂	214.98	15.46	523.25	91.57
Formaldehyde	0.0017	0.0001	0.0042	0.0007

Notes:

1. Annual Expected Emissions are based on up to 500 hours per year of operation

2. Emissions factors based on NSPS IIII and AP-42 Emission Factors.

Refined Products Truck Loading Sawtooth NGL Caverns, LLC

Products	Throughput ²	S ³	P ⁴	M ⁴	т	Loading Loss ¹ (LL)	Generated Vapors	Capture Efficiencv ⁵	Control Efficiency ⁶	Vapors at Truck Loading (Uncontrolled)		Vapors at Combustion Device (Controlled)		Total Emitted VOC
Products						Loss ' (LL)	Vapois	Enciency	Enciency	Captured (to flare)	Emitted	Destroyed	Emitted	(Uncaptured + Uncontrolled)
	(gal/yr)		(psia)	(lb/lb-mole)	(R)	(lb/Mgal)	(tpy)	%	%	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Gasoline/diesel/ ethanol	169,327,200	0.6	4.7	66	514.72	4.51	381.45	98.7	99.8	376.49	4.96	375.74	0.75	5.71
Totals:	169,327,200									376.49	4.96	375.74	0.75	5.71

Data Sources and Notes:

Loading rack VOC emissions calculations are performed in accordance with Section 5.2 of U.S. EPA's Compilation of Air Pollutant Emission Factors, Fifth Edition (7/08 version).

¹ - Equation 1 from AP-42 Section 5.2 (06/08):

$$L_{L} = 12.46 \frac{SPM}{T}$$

Where:

LL = loading loss, lb/Mgal S = saturation factor, dimensionless P = true vapor pressure of liquid loaded, psia M = molecular weight of vapors, lb/lb-mole T = temperature of bulk liquid loaded, R

² - Based on loading 10,000-bbls per day.

³ - Table 5.2-1 of AP-42 (07/08) - S Factor for Submerged loading:dedicated vapor balance service.

⁴ - AP-42 Chapter 7, Table 7.1-2.

⁵ - AP-42 Chapter 5, Page 5.2-6.

⁶ - NSPS Subpart XX Control Requirement of 35 mg/L loaded.

HAP Emissions Based on Product Speciation

Compound	Weight %	tpy							
124-TMB	2.50	0.14							
Benzene	0.68	0.04							
Ethlybenzene	1.40	0.08							
n-Hexane	1.00	0.06							
Toluene	7.00	0.40							
Xylenes	7.00	0.40							
Iso-Octane	4.00	0.23							
Total:	23.58	1.35							

Heat Volue 1		Flared	Flared Flared		Heat		Err	ission Factor	s ⁴				Emissio	ons	
Product	Heat Value ¹	Amount ²	Amount ²	Density ³	Released	со	NO _x	CO2	SO ₂	PM ₁₀	со	NOx	CO ₂	SO ₂	PM ₁₀
	(Btu/gal)	(lb)	(liter)	(lb/gal)	(MMBtu)	(lb/MMBtu)	(lb/MMBtu)	(lb/MMBtu)	(lb/1000 gal)	(µg/l)	(tpy)	(tpy)	(lb/MMBtu)	(tpy)	(tpy)
Gasoline/diesel/e	124,000	752,981	508,989	5.600	16,673	0.37	0.068	135	0.016	177	3.08	0.57	1125.44	0.001	0.0001
Propane	91,330	2,500	1,947	4.860	47	0.37	0.068	135	0.016	177	0.009	0.002	3.17	0.00000	0.00000
										Totals:	3.09	0.57	1128.61	0.001	0.0001

Data Sources and Notes:

¹ - www.engineeringtoolbox.com

² - Flared Amount based on the captured vapors.

³ - AP-42 Chapter 7,Table 7.1-2.

⁴ - NOx and CO: AP-42, Table 13.5-1, p.13-5-4 (02/2018).

⁴ - SO₂: AP-42 Table 1.5-1, assumed average sulfur content is 0.18 grains/100 ft³, which converts to .016 lb of SO2/1000 gal.

- ⁴ CO₂: 40 CFR 98 Subpart C, Table C-1 (Default CO2 e.f. in kg/MMbtu) x 2.2 lb/kg
- ⁴ PM₁₀: AP-42 Table 13.5-1 (02/2018) (for average smoking flares).

Quantity

1 14 1

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Sawtooth Ethanol Tank RP T-008 Delta Utah Sawtooth Caverns, LLC Internal Floating Roof Tank 15,000 bbl IFR Ethanol Tank	
Tank Dimensions	48.00	
Diameter (ft): Volume (gallons):	630.000.00	
Turnovers:	24.00	
Self Supp. Roof? (y/n):	N 24.00	
No. of Columns:	1.00	
Eff. Col. Diam. (ft):	0.70	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	White/White	
Shell Condition	Good	
Roof Color/Shade:	White/White	
Roof Condition:	Good	
Rim-Seal System		
Primary Seal:	Mechanical Shoe	
Secondary Seal	None	
Deck Characteristics		
Deck Fitting Category:	Detail	
Deck Type:	Welded	
Deck Fitting/Status		
Access Hatch (24-in. Diam.)/Bolted	Cover, Gasketed	
Automatic Gauge Float Well/Bolted	Cover, Gasketed	

Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Salt Lake City New, Utah (Avg Atmospheric Pressure = 12.62 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Sawtooth Ethanol Tank RP T-008 - Internal Floating Roof Tank Delta, Utah

,			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	Pressure	psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Ethyl alcohol	All	55.05	49.66	60.44	53.12	0.5539	N/A	N/A	46.0700			46.07	Option 2: A=8.321, B=1718.21, C=237.52

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Sawtooth Ethanol Tank RP T-008 - Internal Floating Roof Tank Delta, Utah

	Losses(lbs)					
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions	
Ethyl alcohol	143.92	71.15	68.86	0.00	283.92	

Appendix B: Utah DAQ Forms

Form 2 Company Information/Ne Utah Division of Air Qual New Source Review Section	lity				
AIR QUALITY Application for: Initial Application	oproval Order 🖌 Approval Order Modification				
General Owne	r and Source Information				
1.Company name and mailing address: Sawtooth Caverns, LLC	2. Company** contact for environmental matters: David Robinson				
Midvale, UT 84047 Phone No.: ((801)) 255-0418 Fax No.: ()	Phone no.: ((832) 489-8837 Email: ** Company contact only; consultant or independent contractor contact information can be provided in a cover letter				
3. Source name and physical address (if different from above): Sawtooth Caverns, LLC	 M 4. Source Property Universal Transverse Mercator coordinates (UTM), including System and Datum: UTM: 12 				
9650 N. 540 E	<u>X:</u> 365,044				
Delta, UT 84624 Phone no.: ((435) 864-1916 Fax no.: ((435) 864-1901	<u>Y:</u> 4,372,053				
5.8°H 1	ounty 6. <u>Standard Industrial Classification Code</u> (SIC) 4226				
7. If request for modification, AO# to be modified: D	AQE #AN143260006-21 DATED: 02 /12 /21				
salt caverns. The modification includes a new unloading points, and the addition of a 350-hp	n barrels of natural gas liquids or refined products in 5 15,000-bbl ethanol tank, the addition of four ethanol o fire water pump.				
Electronic NOI 9. A complete and accurate electronic NOI submitte Humpherys (ahumpherys@utah.gov) can expedite	d to DAQ Permitting Mangers Jon Black (<i>jlblack@utah.gov</i>) or Alan e review process. Please mark application type.				
Hard Copy Submittal Elec	tronic Copy Submittal 🖌 Both				
Author	ization/Singnature				
complete, based on reasonable inquiry made by me a	d in and with this application is completely true, accurate and nd to the best of my knowledge and belief. tle: Chief Operating Officer				
David Robinson Name (Type or print)	Telephone Number: ((832) 489-8837 Email: david.robinson @sawtoothcaverns.comDate: 6/13/2022				

Form 4 Project Information

Company Sawtooth Caverns, LLC Site Delta, Utah

Utah Division of Air Quality New Source Review Section

AIR QUALITY

Process Data - For Modification/Amendment ONLY								
1. Permit Number DAQE-AN143260006-21								
If submitting a new permit, then use Form 3								
Requested Changes								
2. Name of process to be modified/added:	3. Permit Change	Гуре: New Increase*						
Ethanol Tank and Fire Pump	Equipment							
	Process							
End product of this process:	Condition Chang							
Ethanol Transfer	_	le						
	Other							
4. Does new emission unit affect existing	5. Condition(s) Ch	anging:						
permitted process limits?								
Yes No 🖌								
6. Description of Permit/Process Change**								
7. New or modified materials and quantities used	in process. **							
Material		Quantity Annually (bbls)						
Ethanol		360,000.00						
8. New or modified process emitting units **								
Emitting Unit(s)	Capacity(s)	Manufacture Date(s)						
RP T-008	15,000.00 (bbls)	11/01/22						
Fugitives (Ethanol Rail unloading)	30.00 (bbls)	11/01/22						
Fire Pump	215.00	06/18/22						
	+							
	+ +							
	+ +							
L	1							

*If the permit being modified <u>does not</u> include CO₂e or PM_{2.5}, the emissions need to be calculated and submitted to DAQ, which may result in an emissions increase and a public comment period.

**If additional space is required, please generate a document to accommodate and attach to form.

Form 4 Emissions Information Criteria/GHGs/ HAP's Utah Division of Air Quality New Source Review Section

Site Delta, Utah

...

AIR QUALITY New Source Re

Criteria Pollutants	Permitted Emissions (tons/yr)	Emissions Increases (tons/yr)	Proposed Emissions (tons/yr)
PM ₁₀ Total	2.71	0.01	2.72
PM ₁₀ Fugitive	2.48	0.00	2.48
PM _{2.5}	0.35	0.03	0.38
NO _x	1.41	0.56	1.97
SO ₂	0.01	0.04	0.05
CO	4.07	0.39	4.46
VOC	30.30	0.78	31.08
VOC Fugitive	1.65	0.14	1.88
NH ₃			
Greenhouse Gases	<u>CO</u> ₂ <u>e</u>	<u>CO2</u> e	<u>CO2e</u>
CO ₂			
CH ₄			
N ₂ O			
HFCs			
PFCs			
SF ₆			
Total CO2e	2,637.23	198.09	2,835.32

*Potential to emit to include pollution control equipment as defined by R307-401-2.

Hazardous Air Pollutants** (**Defined in Section 112(b) of the Clean Air Act) **Permitted Emissions Emission Increase** Proposed **Emission Increase** Hazardous Air Emission (tons/yr) (tons/yr) (tons/yr) (lbs/hr) Pollutant*** HAP 1.88 0.42 2.30 0.06 **Total HAP**

*** Use additional sheets for pollutants if needed

Diesel Fire Pump BACT Analysis

Sawtooth Caverns, LLC (Sawtooth) is proposing to install a 350-hp diesel powered fire pump for emergency use. The proposed engine meets federal requirements under 40 CFR Part 60 Subpart IIII and 40 CFR Part 63 Subpart ZZZZ. A review of the EPA's RACT/BACT/LAER Clearinghouse (RBLC) indicates that previously approved BACT determinations include compliance with applicable federal regulations. Additionally, Subpart ZZZZ restricts operation to the use of ULSD.

Engines) Option 1 - Title: Meet Federal Regulatory Requirements

Description of Option 1: Description of Option 1: The new emergency fire pump must meet the federal requirements under 40 CFR Part 60 Subpart IIII and 40 CFR Part 63 Subpart ZZZZ. EPA's RBLC indicates that the use of Tier-compliant engines is BACT for emergency engines. The proposed fire pump is NSPS IIII compliant.

Option 2 - Post Combustion Control – (i.e., particulate filter + oxidation catalyst + SCR Catalyst) This control option uses an add on control device designed for diesel engines where a non-selective catalyst will reduce VOC and CO while a selective catalyst will reduce NOx. These systems are widely available.

Technical Feasibility

This step of the BACT analysis eliminates from consideration technically infeasible options, a control technology is not considered technically feasible unless it is both available and applicable according to the New Source Review Workshop manual. To be considered available, a technology must have reached the licensing and commercial demonstration phase of its development. Applicability is based on source-specific factors and physical, chemical, and engineering principles that preclude safe and successful operation of a control option at a specific location.

Option 1: Meet Federal Regulatory Standards - Technically Feasible

Sawtooth will combust only ultra-low sulfur diesel (ULSD) in their emergency engines and utilizes good combustion practices. Additionally, as required by Subpart ZZZZ, Sawtooth will comply with specified maintenance schedules (crankcase oil, belts and hoses, etc.), and minimize time at idle. A review of the EPA's RACT/BACT/LAER Clearinghouse (RBLC) indicates that previously approved BACT determinations include compliance with applicable federal regulations.

Option 2 - Title: Diesel Catalyst - Technically Feasible

The use of PM/SCR/NSCR is technically feasible for reducing NOx, VOC, PM and CO emissions from diesel engines. No examples of the use of this control system were identified in the RBLC, but the technology is widely available and used on diesel engines nationwide.

Economic Feasibility

The economic impact incurred by the use of a pollution control alternative is measured as cost effectiveness. Cost effectiveness is the value obtained by dividing the annual tons of pollutant controlled into the annual cost. This results in a "dollar per ton" effectiveness value used in the economic feasibility analysis. The cost effectiveness calculations for installing oxidation catalysts on the emergency engines were based upon EPA's Air Pollution Cost Control Manual. Based on information obtained from EPA cost data, the following tables present the economic feasibility analysis for oxidation catalyst installation and operation for the emergency fire pump engine.

As identified in the table, the cost effectiveness for catalyst installation is \$6,987 per ton of NOx abated at 500 hours per year of operation. However, Sawtooth expects to run the engine for maintenance checks only (i.e., 12 hours per year). Therefore, the cost per ton is more likely to be \$290,658 per ton. The economic analysis for the other pollutants is also shown in the attached table. Sawtooth considers the installation of a catalyst for the emergency diesel fire pump engine as economically unreasonable for all pollutants. (Based on Office of Air Quality Planning and Standards, EPA, OAQPS Control Cost Manual, Fourth Edition, EPA 450/3-90-006, January 1990, Section 2.3.2)

			Targeted Emission			
Pollutant	Control Method	Typical BACT (%)	without Control (TPY)	with Control (TPY)		
PM ₁₀	Particulate Filter	90%	0.01	0.001		
NO _x	SCR Catalyst	80%	0.55	0.055		
CO	Oxyidation Catalyst	75%	0.07	0.007		
VOC	Oxyidation Catalyst	50%	0.03	0.003		

Pollutant	Interest Rate (i)	Control System Life (n)	Capital Recovery Factor (CRF)	Capital Investment (P)	Annual Maint/Fuel Cost	Capital Recovery Cost (CRC)	Realized Economic Benefit
PM10	0.065	10	0.139	\$6,999	\$450	\$974	\$0
NOx	0.065	10	0.139	\$8,651	\$2,230	\$1,203	\$0
CO	0.065	10	0.139	\$8,651	\$2,230	\$1,203	\$0
VOC	0.065	10	0.139	\$8,651	\$2,230	\$1,203	\$0

"n" is the control system economic life, typically thought to be 10-20 years.

"i" is the considered the annual pretax marginal rate of return on private investment (i.e., what it may cost you to borrow the money).

"P" is the capital investment required to install the controls (i.e., equipment purchase cost, installation/retrofit cost, engineering, etc.). Annual Maintenance Cost is the yearly costs to maintain the control effectiveness (i.e., cleaning, testing, etc).

CRC = CRF * P

CRC = Capital Recovery Cost (Annualized cost of control over the life of the control)

CRF = Capital recovery Factor

P = Capital Investment

CRF = i(1+i)n/(1+i)n-1

i = Annual Interest Rate

n = Economic life of the control

Total Annual Cost (TAC) = Annual Maintenance Cost + Capital Recovery Cost - Realized Economic Benefit

Cost to Control = TAC / (Targeted Emission Volume Without Control - Targeted Emission Volumn with Control)

Pollutant	TAC (\$)	Cost to Control (\$/Ton) @ 500 hrs	Cost to Control (\$/Ton) @ 12 hrs
PM10	\$1,424	\$158,177	\$6,580,167
NOx	\$3,433	\$6,987	\$290,658
СО	\$3,433	\$52,259	\$2,173,961
VOC	\$3,433	\$127,163	\$5,289,971